تاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی
نویسندگان
چکیده
فن آوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقهبندی پوشش های زمین و بررسی تغییرات آنها می باشد. با پیشرفت های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه بندی تصاویر ابرطیفی ایجاب می کند. در این تحقیق سعی می گردد تاثیر کاهش ابعاد به کمک الگوریتم ژنتیک را در فرآیند طبقه بندی طیفی-مکانی تصاویر ابرطیفی بررسی شود. در میان الگوریتم های مختلف طبقه بندی طیفی-مکانی تصاویر ابرطیفی، تاکنون سه الگوریتم قطعه بندی واترشد، هرمی و جنگل پوشای مینیمم مبتنی بر نشانه در ترکیب با الگوریتم طبقهبندی ماشین بردار پشتیبان به بهترین نتایج دست یافته اند. در روش پیشنهادی ابتدا به کمک الگوریتم ژنتیک ابعاد تصویر ابرطیفی کاهش یافته سپس بر روی باندهای حاصل، سه الگوریتم قطعه بندی مذکور پیاده سازی گردید. در نهایت نقشه های قطعه بندی بدست آمده به کمک قانون تصمیم رای اکثریت با نقشه طبقه بندی ماشین بردار پشتیبان ترکیب شد. روش پیشنهادی بر روی سه تصویر ابرطیفی pavia، telops و dc mall پیاده سازی گردید، نتایج آزمایشات بدست آمده برتری استفاده از کاهش ابعاد در الگوریتم جنگل پوشای مینیمم مبتنی بر نشانه و استفاده از تمام باندهای تصویر در الگوریتم های واترشد و هرمی مبتنی بر نشانه را نشان می دهد.
منابع مشابه
بهبود طبقه بندی طیفی-مکانی تصاویر ابرطیفی با به کارگیری اطلاعات مکانی در انتخاب نشانه ها
فنآوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه بندی پوشش های زمین و بررسی تغییرات آنها است. معمولترین روش جهت طبقهبندی تصاویر ابرطیفی، طبقه بندی مبتنی بر پیکسل بوده که در آن هر پیکسل فقط با اطلاعات طیفی خود و بدون در نظر گرفتن پیکسل های همسایه، به کلاس مشخصی اختصاص می یابد. پیشرفتهای اخیر و ایجاد تصاویری با قدرت تفکیک مکا...
متن کاملطبقهبندی طیفی-مکانی تصاویر ابرطیفی به کمک ویژگیهای گشتاور هندسی تصویر و الگوریتم ژنتیک
از تصاویر ابرطیفی همواره در حوزههای مختلفی مانند کشاورزی، زمینشناسی و معدن، مدیریت شهری، نظامی، شناسایی اهداف و... استفاده است. طبقهبندی که یکی از مهمترین شاخهها از الگوریتمهای پردازشی دادههای ابرطیفی است که بهطور سنتی با اطلاعات طیفی انجام میشود. تحقیقات گوناگون نشان داده است که استفاده از ویژگیهای مکانی تصویر در کنار ویژگیهای طیفی موجب میشود دقت طبقهبندی به میزان چشمگیری افزایش ...
متن کاملانتخاب باندهای بهینه جهت بهبود جداسازی طیفی تصاویر ابرطیفی
مدل آنالیز ترکیب خطی به طور گستردهای برای برآورد سهم هر ماده خالص در اختلاط طیفی مورد استفاده قرار میگیرد. راهحل ریاضی مسئله ترکیب، حل مجموعهای از معادلات خطی با استفاده از روش کمترین مربعات میباشد. اما بیشترین منبع خطا در روشهای متداول آنالیز ترکیب طیفی ناشی از عدم امکان محاسبه تغییرات طیفی اعضای خالص در سیر زمان و مکان است. در این فرآیند از اعضای خالص ثابتی برای کل صحنه تصویربرداری استف...
متن کاملبهبود شناسایی تغییرات در مناطق شهری با انتخاب ویژگی های طیفی و مکانی بهینه مبتنی بر الگوریتم ژنتیک
آنالیز تصاویر چندزمانه سنجشاز دور، تکنیک کارآمدی برای شناسایی تغییرات کاربری و پوشش اراضی در مناطق شهری میباشد. جدا از تکنیک بکار رفته برای شناسایی تغییرات،فضای ویژگی تأثیر بسیار زیادی در صحت نتایج دارد. حصول نتایج رضایتبخش در شناسایی تغییرات مناطق شهری، مستلزم بکارگیری ویژگی های طی...
متن کاملناحیه بندی تصاویر ابرطیفی با به کارگیری ویژگی های طیفی-مکانی
سنسورهای سنجش از دور ابرطیفی، با اخذ تصویر در چند صد طول موج مختلف، احتمال تفکیک پذیری مواد موجود در صحنه را نسبت به تصاویر چند طیفی افزایش داده و امکان طبقه بندی تصویر در تعداد کلاس های بیشتر و با دقت بالاتر را فراهم می آورند. بااین وجود، مشکلات ناشی از ابعاد بالای تصاویر ابرطیفی در بعد طیفی، موجب ناکارآمدی روشهای متداول طبقه بندی تصاویر چندطیفی در این تصاویر می شود (نفرین ابعاد). برای حل این ...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
مهندسی فناوری اطلاعات مکانیجلد ۳، شماره ۱، صفحات ۴۵-۶۰
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023